metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1-benzyl-3-methylimidazolium- κC^2)mercury(II) bis(hexafluoridophosphate)

Rosenani A. Haque,^a Abbas Washeel Salman,^a Madhukar Hemamalini^b and Hoong-Kun Fun^b*‡

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 5 August 2011; accepted 9 August 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.032; wR factor = 0.087; data-to-parameter ratio = 12.6.

The asymmetric unit of the title complex, $[Hg(C_{11}H_{12}N_2)_2]$ -(PF₆)₂, consists of one bis(1-benzyl-3-methylimidazolium)mercury(II) cation, one half of the cation and an additional Hg^{II} atom, which lies on an inversion centre, and three hexafluoridophosphate anions. The Hg^{II} atoms exist in a linear coordination geometry $[C-Hg-C = 178.9 (2) \text{ and } 180^\circ]$ formed by two carbene C atoms from the imidazole rings. In the crystal, the cations and anions are connected *via* $C-H\cdots F$ hydrogen bonds, forming a three-dimensional network.

Related literature

For details of *N*-heterocyclic carbenes, see: Herrmann (2002); Arduengo *et al.* (1991); Herrmann *et al.* (1998); McGuinness *et al.* (1999); Wanzlick & Schönherr (1968). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $\begin{array}{ll} [\mathrm{Hg}(\mathrm{C}_{11}\mathrm{H}_{12}\mathrm{N}_{2})_2](\mathrm{PF}_{6})_2 & V = 4020.5 \ (8) \ \text{\AA}^3 \\ M_r = 834.98 & Z = 6 \\ \mathrm{Monoclinic}, P2_1/c & \mathrm{Mo} \ K\alpha \ \mathrm{radiation} \\ a = 15.1260 \ (17) \ \text{\AA} & \mu = 5.97 \ \mathrm{mm}^{-1} \\ b = 10.3044 \ (11) \ \text{\AA} & T = 100 \ \mathrm{K} \\ c = 26.398 \ (3) \ \text{\AA} & 0.34 \times 0.32 \times 0.05 \ \mathrm{mm} \\ \beta = 102.275 \ (2)^{\circ} \end{array}$

Data collection

 Bruker APEXII DUO CCD areadetector diffractometer
 Absorption correction: multi-scan (SADABS; Bruker, 2009)
 T_{min} = 0.233, T_{max} = 0.751

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.087$ S = 1.067062 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10A\cdots F15^{i}$	0.93	2.32	3.240 (7)	171
$C11-H11C\cdots F6^{ii}$	0.96	2.55	3.375 (7)	144
$C13-H13A\cdots F7^{i}$	0.93	2.43	3.355 (7)	175
C18−H18A····F5 ⁱⁱ	0.97	2.50	3.282 (6)	138
$C18-H18B\cdots F13^{ii}$	0.97	2.45	3.111 (6)	125
$C21 - H21A \cdot \cdot \cdot F12^{iii}$	0.93	2.51	3.351 (6)	150
$C29-H29B\cdots F17^{iv}$	0.97	2.48	3.125 (7)	123
$C31-H31A\cdots F11^{iv}$	0.93	2.43	3.271 (6)	150

23876 measured reflections

 $R_{\rm int} = 0.046$

559 parameters

 $\Delta \rho_{\rm max} = 1.71 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -2.05 \text{ e} \text{ Å}^{-3}$

7062 independent reflections

5985 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

RAH and AWS thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), short term grant (304/ PKIMIA/639001) and RU grants (1001/PKIMIA/813023 and 1001/PKIMIA/811157). AWS thanks Universiti Sains Malaysia (USM) for the RU grant (1001/PKIMIA/843090). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/ 811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2765).

[‡] Thomson Reuters ResearcherID: A-3561-2009.

References

- Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.
- Herrmann, W. A., Goossen, L. J. & Spiegler, M. (1998). Organometallics, 17, 2162–2168.
- McGuinness, D. S., Cavell, K. J., Skelton, B. W. & White, A. H. (1999). Organometallics, 18, 1596–1605.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wanzlick, H. W. & Schönherr, H. J. (1968). Angew. Chem. Int. Ed. Engl. 7, 141– 142.

Acta Cryst. (2011). E67, m1242-m1243 [doi:10.1107/S1600536811032235]

Bis(1-benzyl-3-methylimidazolium- κC^2)mercury(II) bis(hexafluoridophosphate)

R. A. Haque, A. W. Salman, M. Hemamalini and H.-K. Fun

Comment

In the last two decades, *N*-heterocyclic carbene (NHC) ligands have emerged as useful and versatile ligands in organometallic chemistry (Herrmann, 2002). The chemistry of NHCs attracted much attention after the isolation of the first stable, crystalline free carbene (Arduengo *et al.*, 1991) which was [1,3-bis(adamantly)imidazole-2-ylidene]. Carbene ligands have some similarities to phosphine ligands, but metal- carbene complexes are often more stable than similar metal phosphine complexes (Herrmann *et al.*, 1998; McGuinness *et al.*, 1999). The first mercury(II)-NHC complex was prepared by Wanzlick and Schönherr (1968) *via* direct reaction of an imidazolium salt with mercury(II) acetate. However, in spite of being the earliest example of NHC-metal complexes prepared, NHC-mercury complexes have received little attention compared with other metals. Similarly, their applications have not been widely explored.

The asymmetric unit of title complex (I) consists of one bis(1-benzyl-3- methylimidazolium)mercury(II) cation, a half of the (1-benzyl-3-methyl imidazolium)mercury(II) cation (which lies on an inversion centre) and three hexafluorophosphate anions as shown in Fig. 1. The Hg^{II} atom exists in a linear coordination geometry formed by two C atoms from the imidazole rings. The bond distances of Hg1–C8 = 2.070 (5) Å; Hg1–C19 = 2.073 (5) Å and Hg2–C30 = 2.070 (5) Å. The distorted octahedral geometry of phosphate ion has typical P–F distances [1.578 (4)–1.610 (3) Å] and F–P–F angles [88.37 (19)–179.4 (2)°]. All bond lengths and bond angles in (I) are in the range of expected values.

In the crystal structure (Fig. 2), ions are connected by C10—H10A…F15; C13—H13A…F7; C18—H18A…F5; C18—H18B…F13; C21—H21A…F12; C29—H29B…F17 and C31—H31A…F11 hydrogen bonds (Table 1), forming a three-dimensional network.

Experimental

 $Hg(OAc)_2$ (0.35 g, 1.09 mmol) was added to a solution of 1-benzyl-3-methylimidazolium hexafluorophosphate (0.6 g, 1.88) in 40 ml of acetonitrile. The mixture was refluxed at 353–363 K for 18 h to give a clear solution. The solvent was removed under reduced pressure to afford a white solid. The white solid was collected, washed with distilled water (3 × 5 ml) and recrystallized from acetonitrile. Yield: 62.4 %, m.p. = 540–543 °C. Crystal suitable for X-ray analysis was obtained by slow diffusion of diethyl ether into solution of the complex in acetonitrile.

Refinement

All hydrogen atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl groups. The highest residual electron density peak is located at 1.30 Å from C8 and the deepest hole 0.96 Å located at from Hg2.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. N5A–N6A/C23A–C32A are generated by the symmetry code -x, -y, -z (H atoms are omitted for clarity).

Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network.

Bis(1-benzyl-3-methylimidazolium- κC^2)mercury(II) bis(hexafluoridophosphate)

$[Hg(C_{11}H_{12}N_2)_2](PF_6)_2$	F(000) = 2412
$M_r = 834.98$	$D_{\rm x} = 2.069 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9967 reflections
a = 15.1260 (17) Å	$\theta = 2.8 - 29.9^{\circ}$
b = 10.3044 (11) Å	$\mu = 5.97 \text{ mm}^{-1}$
c = 26.398 (3) Å	T = 100 K
$\beta = 102.275 \ (2)^{\circ}$	Plate, colourless
$V = 4020.5 (8) \text{ Å}^3$	$0.34\times0.32\times0.05~mm$
Z = 6	

Data collection

Bruker APEXII DUO CCD area-detector diffractometer	7062 independent reflections
Radiation source: fine-focus sealed tube	5985 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.046$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -17 \rightarrow 17$
$T_{\min} = 0.233, T_{\max} = 0.751$	$k = -12 \rightarrow 12$
23876 measured reflections	$l = -31 \rightarrow 31$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.087$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0446P)^{2} + 4.1101P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
7062 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
559 parameters	$\Delta \rho_{max} = 1.71 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -2.05 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Hg1	0.315207 (14)	0.97602 (2)	0.334192 (7)	0.01976 (8)
N1	0.4304 (3)	0.7691 (4)	0.40062 (17)	0.0236 (10)
N2	0.5155 (3)	0.8950 (4)	0.36710 (16)	0.0224 (10)
N3	0.2029 (3)	1.1919 (4)	0.27283 (16)	0.0202 (9)
N4	0.1147 (3)	1.0569 (4)	0.30011 (16)	0.0212 (10)
C1	0.2034 (4)	0.7697 (6)	0.4355 (2)	0.0257 (12)
H1A	0.1790	0.6958	0.4176	0.031*
C2	0.1494 (4)	0.8480 (6)	0.4601 (2)	0.0274 (13)
H2A	0.0895	0.8256	0.4589	0.033*
C3	0.1852 (4)	0.9572 (6)	0.4857 (2)	0.0286 (13)
H3A	0.1496	1.0086	0.5024	0.034*
C4	0.2739 (4)	0.9921 (6)	0.4872 (2)	0.0300 (14)
H4A	0.2972	1.0678	0.5040	0.036*
C5	0.3283 (4)	0.9140 (5)	0.4635 (2)	0.0242 (12)
H5A	0.3882	0.9369	0.4649	0.029*
C6	0.2933 (3)	0.8026 (5)	0.43784 (19)	0.0217 (11)

C7	0.3504 (4)	0.7083 (6)	0.4139 (2)	0.0297 (13)
H7A	0.3699	0.6379	0.4380	0.036*
H7B	0.3132	0.6714	0.3827	0.036*
C8	0.4286 (3)	0.8703 (5)	0.3685 (2)	0.0219 (11)
C9	0.5174 (4)	0.7287 (6)	0.4192 (2)	0.0274 (13)
H9A	0.5360	0.6602	0.4419	0.033*
C10	0.5708 (4)	0.8078 (6)	0.3981 (2)	0.0284 (13)
H10A	0.6336	0.8039	0.4035	0.034*
C11	0.5465 (4)	0.9991 (6)	0.3372 (2)	0.0317 (14)
H11A	0.4976	1.0259	0.3097	0.048*
H11B	0.5956	0.9680	0.3227	0.048*
H11C	0.5666	1.0715	0.3595	0.048*
C12	0.4378 (4)	1.2409 (6)	0.2515 (2)	0.0265 (12)
H12A	0.4532	1.3140	0.2722	0.032*
C13	0.5017 (4)	1.1815 (6)	0.2282 (2)	0.0284 (13)
H13A	0.5599	1.2152	0.2332	0.034*
C14	0.4788 (4)	1.0730 (6)	0.1976 (2)	0.0269 (13)
H14A	0.5214	1.0349	0.1815	0.032*
C15	0.3924 (4)	1.0201 (5)	0.1908 (2)	0.0278 (13)
H15A	0.3775	0.9453	0.1711	0.033*
C16	0.3284 (3)	1.0807 (5)	0.21380 (19)	0.0221 (12)
H16A	0.2702	1.0466	0.2088	0.027*
C17	0.3499 (3)	1.1894 (5)	0.24355 (19)	0.0202 (11)
C18	0.2829 (3)	1.2660 (5)	0.2668 (2)	0.0224 (12)
H18A	0.3134	1.2979	0.3006	0.027*
H18B	0.2631	1.3407	0.2450	0.027*
C19	0.2020 (3)	1.0841 (5)	0.30121 (19)	0.0207 (11)
C20	0.1155 (3)	1.2331 (6)	0.2541 (2)	0.0249 (12)
H20A	0.0978	1.3053	0.2332	0.030*
C21	0.0606 (3)	1.1502 (6)	0.2714 (2)	0.0273 (13)
H21A	-0.0022	1.1547	0.2653	0.033*
C22	0.0795 (4)	0.9499 (6)	0.3266 (2)	0.0300 (13)
H22A	0.1277	0.9134	0.3522	0.045*
H22B	0.0548	0.8843	0.3018	0.045*
H22C	0.0331	0.9818	0.3431	0.045*
P1	0.45866 (9)	0.30179 (15)	0.42352 (5)	0.0234 (3)
F1	0.5096 (3)	0.1820 (4)	0.45364 (15)	0.0601 (12)
F2	0.5246 (2)	0.3987 (5)	0.46037 (15)	0.0600 (13)
F3	0.3896 (2)	0.3037 (4)	0.46149 (12)	0.0484 (11)
F4	0.4061 (2)	0.4205 (3)	0.39212 (14)	0.0442 (9)
F5	0.3921 (2)	0.2045 (3)	0.38564 (13)	0.0337 (8)
F6	0.5263 (2)	0.2995 (3)	0.38445 (12)	0.0330 (8)
P2	0.21906 (9)	0.66755 (14)	0.24439 (5)	0.0218 (3)
F7	0.2844 (2)	0.7903 (3)	0.24821 (13)	0.0356 (8)
F8	0.1816 (3)	0.7220 (4)	0.29269 (14)	0.0482 (10)
F9	0.2952 (2)	0.5900 (3)	0.28381 (13)	0.0348 (8)
F10	0.1427 (2)	0.7453 (4)	0.20554 (15)	0.0467 (10)
F11	0.2578 (2)	0.6126 (4)	0.19728 (12)	0.0407 (9)
F12	0.1528 (2)	0.5457 (3)	0.24149 (13)	0.0366 (8)

Hg2	0.0000	0.0000	0.0000	0.01912 (9)
N5	-0.1234 (3)	0.1955 (5)	-0.06934 (16)	0.0235 (10)
N6	-0.2023 (3)	0.0628 (5)	-0.03454 (16)	0.0221 (10)
C23	0.1087 (3)	0.2497 (5)	-0.09363 (19)	0.0243 (12)
H23A	0.1211	0.3283	-0.0763	0.029*
C24	0.1761 (4)	0.1875 (6)	-0.1134 (2)	0.0298 (14)
H24A	0.2332	0.2245	-0.1091	0.036*
C25	0.1581 (4)	0.0723 (6)	-0.1391 (2)	0.0271 (13)
H25A	0.2028	0.0315	-0.1526	0.033*
C26	0.0732 (4)	0.0163 (5)	-0.1451 (2)	0.0275 (13)
H26A	0.0613	-0.0627	-0.1622	0.033*
C27	0.0054 (4)	0.0778 (6)	-0.12544 (19)	0.0245 (12)
H27A	-0.0516	0.0402	-0.1297	0.029*
C28	0.0231 (3)	0.1943 (5)	-0.09981 (19)	0.0223 (12)
C29	-0.0482 (4)	0.2735 (6)	-0.0805 (2)	0.0265 (12)
H29A	-0.0193	0.3191	-0.0492	0.032*
H29B	-0.0727	0.3381	-0.1064	0.032*
C30	-0.1169 (3)	0.0956 (5)	-0.03602 (19)	0.0194 (11)
C31	-0.2122 (4)	0.2274 (6)	-0.0878 (2)	0.0278 (13)
H31A	-0.2341	0.2938	-0.1109	0.033*
C32	-0.2616 (4)	0.1437 (6)	-0.0659 (2)	0.0288 (13)
H32A	-0.3244	0.1414	-0.0712	0.035*
C33	-0.2284 (4)	-0.0431 (6)	-0.0037 (2)	0.0283 (13)
H33A	-0.1774	-0.0675	0.0230	0.042*
H33B	-0.2478	-0.1164	-0.0258	0.042*
H33C	-0.2770	-0.0149	0.0118	0.042*
P3	0.12543 (9)	0.28634 (14)	0.09916 (5)	0.0229 (3)
F13	0.1781 (3)	0.3315 (4)	0.15507 (13)	0.0482 (10)
F14	0.0398 (2)	0.2474 (4)	0.12232 (14)	0.0420 (9)
F15	0.2103 (2)	0.3240 (4)	0.07545 (13)	0.0426 (9)
F16	0.0722 (2)	0.2397 (3)	0.04238 (12)	0.0351 (8)
F17	0.0841 (2)	0.4277 (3)	0.08649 (13)	0.0371 (8)
F18	0.1647 (2)	0.1422 (3)	0.11060 (12)	0.0348 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.01747 (12)	0.02072 (13)	0.02189 (12)	0.00238 (8)	0.00597 (8)	0.00041 (8)
N1	0.029 (3)	0.018 (2)	0.027 (2)	0.008 (2)	0.013 (2)	0.0043 (19)
N2	0.022 (2)	0.022 (2)	0.025 (2)	0.002 (2)	0.0088 (19)	-0.0036 (19)
N3	0.015 (2)	0.023 (2)	0.025 (2)	0.0042 (19)	0.0085 (18)	0.0001 (19)
N4	0.017 (2)	0.025 (2)	0.024 (2)	0.000 (2)	0.0084 (18)	0.000 (2)
C1	0.027 (3)	0.026 (3)	0.024 (3)	-0.008 (2)	0.005 (2)	0.003 (2)
C2	0.023 (3)	0.036 (3)	0.024 (3)	-0.002 (3)	0.008 (2)	0.006 (3)
C3	0.028 (3)	0.035 (3)	0.028 (3)	0.007 (3)	0.015 (2)	0.005 (3)
C4	0.034 (3)	0.028 (3)	0.031 (3)	0.001 (3)	0.012 (3)	-0.004 (2)
C5	0.021 (3)	0.028 (3)	0.025 (3)	0.001 (2)	0.007 (2)	0.001 (2)
C6	0.022 (3)	0.023 (3)	0.020 (3)	0.003 (2)	0.004 (2)	0.003 (2)

C7	0.033 (3)	0.020 (3)	0.042 (3)	0.001 (3)	0.022 (3)	0.003 (3)
C8	0.023 (3)	0.019 (3)	0.025 (3)	0.004 (2)	0.009 (2)	0.002 (2)
C9	0.029 (3)	0.029 (3)	0.024 (3)	0.013 (3)	0.005 (2)	0.004 (2)
C10	0.019 (3)	0.038 (4)	0.026 (3)	0.009 (3)	-0.001 (2)	-0.003 (3)
C11	0.028 (3)	0.032 (3)	0.040 (4)	-0.001 (3)	0.018 (3)	0.000 (3)
C12	0.023 (3)	0.027 (3)	0.030 (3)	-0.002 (2)	0.007 (2)	0.002 (2)
C13	0.016 (3)	0.034 (3)	0.038 (3)	0.000 (2)	0.011 (2)	0.012 (3)
C14	0.026 (3)	0.028 (3)	0.031 (3)	0.007 (3)	0.016 (2)	0.008 (2)
C15	0.037 (3)	0.025 (3)	0.023 (3)	0.004 (3)	0.012 (3)	0.000(2)
C16	0.018 (3)	0.026 (3)	0.025 (3)	-0.004 (2)	0.009 (2)	0.002 (2)
C17	0.016 (3)	0.022 (3)	0.024 (3)	0.005 (2)	0.009 (2)	0.005 (2)
C18	0.021 (3)	0.022 (3)	0.026 (3)	-0.002 (2)	0.008 (2)	-0.002 (2)
C19	0.018 (3)	0.024 (3)	0.023 (3)	0.003 (2)	0.012 (2)	0.001 (2)
C20	0.018 (3)	0.029 (3)	0.027 (3)	0.008 (2)	0.003 (2)	0.001 (2)
C21	0.015 (3)	0.035 (3)	0.031 (3)	0.003 (2)	0.004 (2)	0.001 (3)
C22	0.023 (3)	0.031 (3)	0.040 (3)	-0.002 (3)	0.016 (3)	0.007 (3)
P1	0.0168 (7)	0.0314 (8)	0.0225 (7)	-0.0002 (6)	0.0054 (6)	-0.0045 (6)
F1	0.044 (2)	0.074 (3)	0.061 (3)	0.021 (2)	0.009 (2)	0.033 (2)
F2	0.036 (2)	0.088 (3)	0.058 (2)	-0.017 (2)	0.0141 (19)	-0.044 (2)
F3	0.0268 (18)	0.094 (3)	0.0278 (18)	-0.002 (2)	0.0140 (15)	-0.008 (2)
F4	0.044 (2)	0.028 (2)	0.063 (2)	0.0109 (17)	0.0169 (19)	0.0044 (18)
F5	0.0269 (17)	0.0280 (19)	0.048 (2)	-0.0072 (15)	0.0110 (15)	-0.0115 (16)
F6	0.0233 (17)	0.046 (2)	0.0332 (18)	-0.0088 (16)	0.0142 (14)	-0.0085 (16)
P2	0.0182 (7)	0.0220 (7)	0.0261 (7)	-0.0002 (6)	0.0068 (6)	-0.0002 (6)
F7	0.0307 (18)	0.0258 (19)	0.052 (2)	-0.0038 (15)	0.0115 (16)	0.0000 (16)
F8	0.066 (3)	0.038 (2)	0.053 (2)	0.009 (2)	0.041 (2)	-0.0030 (18)
F9	0.0252 (17)	0.035 (2)	0.043 (2)	0.0026 (15)	0.0034 (15)	0.0113 (16)
F10	0.0290 (19)	0.044 (2)	0.063 (2)	0.0097 (17)	0.0005 (17)	0.0187 (19)
F11	0.054 (2)	0.040 (2)	0.0351 (19)	-0.0009 (18)	0.0250 (17)	-0.0065 (16)
F12	0.0218 (17)	0.0309 (19)	0.056 (2)	-0.0058 (15)	0.0061 (15)	0.0047 (17)
Hg2	0.01532 (15)	0.02267 (16)	0.02001 (15)	0.00282 (11)	0.00519 (11)	0.00063 (11)
N5	0.023 (2)	0.026 (3)	0.022 (2)	0.007 (2)	0.0074 (19)	0.001 (2)
N6	0.019 (2)	0.028 (3)	0.021 (2)	0.001 (2)	0.0081 (18)	0.000 (2)
C23	0.026 (3)	0.023 (3)	0.024 (3)	-0.006(2)	0.006 (2)	0.000 (2)
C24	0.020 (3)	0.041 (4)	0.032 (3)	-0.006(3)	0.012 (2)	0.010 (3)
C25	0.021(3)	0.030(3)	0.025(3)	0.008 (3)	0.015(2)	0.007(2)
C26	0.035(3)	0.024(3)	0.027(3)	0.000(3)	0.015(3)	0.007(2)
C27	0.022(3)	0.029(3)	0.023(3)	-0.001(2)	0.012(2)	0.001(2)
C28	0.022(3)	0.023(3)	0.023(3)	-0.001(2)	0.007(2)	0.001(2)
C29	0.022(3)	0.025(3)	0.029(3)	0.001(2)	0.007(2)	-0.001(2)
C30	0.020(3)	0.023(3)	0.023(3)	0.001(2)	0.012(2)	0.001(2)
C31	0.024(3)	0.025(3)	0.020(3)	0.001(2)	0.005(2)	0.000(2)
C32	0.021(3)	0.040(4)	0.020(3)	0.013(3)	0.003(2)	-0.002(2)
C33	0.010(3)	0.030(3)	0.036(3)	0.000(3)	0.0017(3)	0.002(3)
P3	0.0212(7)	0.0235 (8)	0.0252 (7)	-0.0024 (6)	0.0078 (6)	-0.002(0)
F13	0.064(2)	0.045(2)	0.0311 (19)	-0.007(2)	-0.0009(18)	-0.0020(0)
F14	0.007(2)	0.040(2)	0.057(2)	0.007(2) 0.0023(17)	0.0284 (18)	0.0121(18)
F15	0.030(2)	0.070(2)	0.057(2)	-0.0023(17)	0.0155 (16)	0.0127 (10)
F16	0.0201(17)	0.037(3)	0.037(2)	0.0034(17)	0.0011 (15)	
1 10	0.0554 (19)	0.055 (2)	0.0521 (10)	0.0034 (10)	0.0011 (13)	0.0009 (15)

F17	0.046 (2)	0.0260 (19)	0.042 (2)	0.0047 (17)	0.0158 (17)	0.0026 (16)
F18	0.0357 (19)	0.0311 (19)	0.0369 (19)	0.0091 (16)	0.0061 (15)	0.0029 (15)
Geometric parai	neters (Å, °)					
Hg1—C8		2.070 (5)	C21–	-H21A	0.93	300
Hg1—C19		2.073 (5)	C22–	-H22A	0.96	500
N1—C8		1.341 (7)	C22–	-H22B	0.96	500
N1—C9		1.367 (7)	C22–	-H22C	0.96	500
N1—C7		1.470 (7)	P1—I	71	1.57	78 (4)
N2—C8		1.348 (6)	P1—I	72	1.58	39 (4)
N2-C10		1.373 (7)	P1—I	F4	1.59	92 (4)
N2-C11		1.467 (7)	P1—I	F3	1.59	94 (3)
N3—C19		1.341 (7)	P1—I	56	1.60	00 (3)
N3—C20		1.377 (6)	P1—I	5	1.61	0 (3)
N3—C18		1.467 (6)	P2—I	F11	1.58	38 (3)
N4—C19		1.344 (6)	P2—I	F10	1.58	38 (4)
N4-C21		1.380 (7)	P2—I	F9	1.59	93 (3)
N4—C22		1.464 (7)	P2—I	7	1.59	95 (3)
C1—C6		1.391 (7)	P2—I	F12	1.59	98 (3)
C1—C2		1.401 (8)	P2—I	F8	1.60	03 (3)
C1—H1A		0.9300	Hg2–	-C30 ⁱ	2.07	70 (5)
C2—C3		1.365 (8)	Hg2–	-C30	2.07	70 (5)
C2—H2A		0.9300	N5—	C30	1.34	14 (7)
C3—C4		1.381 (8)	N5—	C31	1.36	58 (7)
С3—НЗА		0.9300	N5—	C29	1.47	72 (7)
C4—C5		1.392 (8)	N6—	C30	1.34	14 (6)
C4—H4A		0.9300	N6—	C32	1.36	58 (7)
C5—C6		1.379 (8)	N6—	C33	1.46	55 (7)
С5—Н5А		0.9300	C23–	-C28	1.39	93 (7)
C6—C7		1.523 (7)	C23–	-C24	1.39	96 (7)
С7—Н7А		0.9700	C23–	-H23A	0.93	300
С7—Н7В		0.9700	C24–	-C25	1.36	55 (8)
C9—C10		1.350 (8)	C24–	-H24A	0.93	300
С9—Н9А		0.9300	C25–	-C26	1.38	37 (8)
C10—H10A		0.9300	C25–	-H25A	0.93	300
C11—H11A		0.9600	C26–	-C27	1.39	95 (7)
C11—H11B		0.9600	C26–	-H26A	0.93	300
C11—H11C		0.9600	C27–	-C28	1.37	76 (8)
C12—C13		1.393 (7)	C27–	-H27A	0.93	300
C12—C17		1.405 (7)	C28–	-C29	1.52	24 (7)
C12—H12A		0.9300	C29–	-H29A	0.97	700
C13—C14		1.379 (8)	C29–	-H29B	0.97	700
C13—H13A		0.9300	C31–	-C32	1.35	50 (8)
C14—C15		1.392 (8)	C31–	-H31A	0.93	300
C14—H14A		0.9300	C32—	-H32A	0.93	300
C15—C16		1.396 (7)	C33–	-H33A	0.96	500
C15—H15A		0.9300	C33–	-H33B	0.96	500
C16—C17		1.367 (7)	C33–	-H33C	0.96	500

C16—H16A	0.9300	P3—F13	1.591 (4)
C17—C18	1.514 (7)	P3—F15	1.591 (3)
C18—H18A	0.9700	P3—F17	1.592 (4)
C18—H18B	0.9700	P3—F14	1.597 (3)
C20—C21	1.337 (7)	P3—F18	1.604 (3)
C20—H20A	0.9300	P3—F16	1.616 (3)
C8—Hg1—C19	178.9 (2)	F1—P1—F2	90.4 (3)
C8—N1—C9	110.7 (5)	F1—P1—F4	178.7 (3)
C8—N1—C7	125.1 (5)	F2—P1—F4	90.9 (2)
C9—N1—C7	124.3 (5)	F1—P1—F3	90.5 (2)
C8—N2—C10	109.6 (4)	F2—P1—F3	91.0 (2)
C8—N2—C11	125.3 (5)	F4—P1—F3	89.8 (2)
C10—N2—C11	125.1 (5)	F1—P1—F6	90.1 (2)
C19 - N3 - C20	109 5 (4)	F2—P1—F6	89 97 (19)
C19 - N3 - C18	1267(4)	F4—P1—F6	89 56 (19)
$C_{20} = N_{3} = C_{18}$	123.5 (5)	F3F6	178 9 (2)
$C_{10} = N_{4} = C_{21}$	129.3(3) 109.3(4)	F1P1F5	90.0(2)
C19 - N4 - C22	109.5(4)	F2P1F5	1794(2)
$C_{1} = N_{1} = C_{22}$	127.0(5) 123.6(4)	F4F5	177.4(2) 88.73(19)
$C_{21} = 10^{-1} + C_{22}$	123.0(4)	1 + 1 + 1 = 1 = 1 = 5 E2 D1 E5	88.75 (17)
C_{0}	120.0 (3)	F3-F1-F3 F6 D1 F5	89.51 (19)
$C_0 = C_1 = H_1 A$	120.0	$\begin{array}{ccc} \mathbf{F}0 & & \mathbf{F}1 & & \mathbf{F}3 \\ \mathbf{F}1 & & \mathbf{D}2 & & \mathbf{F}10 \\ \end{array}$	89.33(17)
$C_2 = C_1 = HIA$	120.0	F11 - F2 - F10	90.7 (2)
$C_3 = C_2 = C_1$	119.7 (5)	F11—P2—F9	89.8 (2)
C3—C2—H2A	120.1	F10—P2—F9	1/9.4 (2)
C1—C2—H2A	120.1	F11—P2—F ² /	90.32 (19)
C2—C3—C4	120.6 (5)	F10—P2—F/	89.8 (2)
С2—С3—НЗА	119.7	F9—P2—F7	90.26 (19)
C4—C3—H3A	119.7	F11—P2—F12	90.8 (2)
C3—C4—C5	120.0 (6)	F10—P2—F12	90.18 (19)
С3—С4—Н4А	120.0	F9—P2—F12	89.78 (19)
С5—С4—Н4А	120.0	F7—P2—F12	178.9 (2)
C6—C5—C4	120.0 (5)	F11—P2—F8	178.9 (2)
С6—С5—Н5А	120.0	F10—P2—F8	90.3 (2)
С4—С5—Н5А	120.0	F9—P2—F8	89.1 (2)
C5—C6—C1	119.6 (5)	F7—P2—F8	89.5 (2)
C5—C6—C7	122.8 (5)	F12—P2—F8	89.4 (2)
C1—C6—C7	117.5 (5)	C30 ⁱ —Hg2—C30	180.0 (4)
N1—C7—C6	113.3 (5)	C30—N5—C31	110.4 (5)
N1—C7—H7A	108.9	C30—N5—C29	126.6 (4)
С6—С7—Н7А	108.9	C31—N5—C29	122.6 (5)
N1—C7—H7B	108.9	C30—N6—C32	109.9 (4)
С6—С7—Н7В	108.9	C30—N6—C33	125.3 (5)
H7A—C7—H7B	107.7	C32—N6—C33	124.8 (5)
N1—C8—N2	105.9 (5)	C28—C23—C24	120.2 (5)
N1—C8—Hg1	126.1 (4)	C28—C23—H23A	119.9
N2—C8—Hg1	127.7 (4)	C24—C23—H23A	119.9
C10—C9—N1	106.4 (5)	C25—C24—C23	120.1 (5)
С10—С9—Н9А	126.8	C25—C24—H24A	120.0

N1—C9—H9A	126.8	C23—C24—H24A	120.0
C9—C10—N2	107.4 (5)	C24—C25—C26	120.0 (5)
C9—C10—H10A	126.3	С24—С25—Н25А	120.0
N2-C10-H10A	126.3	С26—С25—Н25А	120.0
N2—C11—H11A	109.5	C25—C26—C27	120.3 (5)
N2—C11—H11B	109.5	С25—С26—Н26А	119.8
H11A—C11—H11B	109.5	С27—С26—Н26А	119.8
N2—C11—H11C	109.5	C28—C27—C26	119.8 (5)
H11A—C11—H11C	109.5	С28—С27—Н27А	120.1
H11B—C11—H11C	109.5	С26—С27—Н27А	120.1
C13—C12—C17	119.4 (5)	C27—C28—C23	119.6 (5)
C13—C12—H12A	120.3	C27—C28—C29	123.6 (5)
C17—C12—H12A	120.3	C23—C28—C29	116.6 (5)
C14—C13—C12	120.2 (5)	N5-C29-C28	114.0 (5)
C14—C13—H13A	119.9	N5—C29—H29A	108.8
C12—C13—H13A	119.9	С28—С29—Н29А	108.8
C13—C14—C15	120.3 (5)	N5—C29—H29B	108.8
C13—C14—H14A	119.8	С28—С29—Н29В	108.8
C15—C14—H14A	119.8	H29A—C29—H29B	107.7
C14—C15—C16	119.2 (5)	N6-C30-N5	105.9 (4)
C14—C15—H15A	120.4	N6—C30—Hg2	126.9 (4)
C16-C15-H15A	120.4	N5—C30—Hg2	127.0 (4)
C17—C16—C15	121.0 (5)	C32—C31—N5	106.6 (5)
C17—C16—H16A	119.5	С32—С31—Н31А	126.7
C15—C16—H16A	119.5	N5—C31—H31A	126.7
C16—C17—C12	119.8 (5)	C31—C32—N6	107.2 (5)
C16—C17—C18	124.2 (5)	С31—С32—Н32А	126.4
C12—C17—C18	115.9 (5)	N6—C32—H32A	126.4
N3—C18—C17	114.3 (4)	N6—C33—H33A	109.5
N3—C18—H18A	108.7	N6—C33—H33B	109.5
C17—C18—H18A	108.7	H33A—C33—H33B	109.5
N3—C18—H18B	108.7	N6—C33—H33C	109.5
C17—C18—H18B	108.7	Н33А—С33—Н33С	109.5
H18A—C18—H18B	107.6	H33B—C33—H33C	109.5
N3—C19—N4	106.7 (5)	F13—P3—F15	90.4 (2)
N3—C19—Hg1	125.0 (4)	F13—P3—F17	91.4 (2)
N4	128.1 (4)	F15—P3—F17	90.44 (19)
C21—C20—N3	107.4 (5)	F13—P3—F14	90.3 (2)
C21—C20—H20A	126.3	F15—P3—F14	179.3 (2)
N3—C20—H20A	126.3	F17—P3—F14	89.77 (19)
C20—C21—N4	107.1 (4)	F13—P3—F18	90.2 (2)
C20—C21—H21A	126.4	F15—P3—F18	90.16 (19)
N4—C21—H21A	126.4	F17—P3—F18	178.3 (2)
N4—C22—H22A	109.5	F14—P3—F18	89.61 (19)
N4—C22—H22B	109.5	F13—P3—F16	179.7 (2)
H22A—C22—H22B	109.5	F15—P3—F16	89.57 (19)
N4—C22—H22C	109.5	F17—P3—F16	88.93 (19)
H22A—C22—H22C	109.5	F14—P3—F16	89.74 (19)
H22B—C22—H22C	109.5	F18—P3—F16	89.47 (18)

C6—C1—C2—C3	0.8 (8)	C18—N3—C19—N4	173.6 (4)
C1—C2—C3—C4	0.7 (9)	C20—N3—C19—Hg1	175.8 (4)
C2—C3—C4—C5	-1.6 (9)	C18—N3—C19—Hg1	-11.0 (7)
C3—C4—C5—C6	0.9 (9)	C21—N4—C19—N3	-1.1 (6)
C4—C5—C6—C1	0.6 (8)	C22—N4—C19—N3	-178.4 (5)
C4—C5—C6—C7	-176.1 (5)	C21—N4—C19—Hg1	-176.2 (4)
C2-C1-C6-C5	-1.5 (8)	C22—N4—C19—Hg1	6.5 (8)
C2-C1-C6-C7	175.5 (5)	C19—N3—C20—C21	0.4 (6)
C8—N1—C7—C6	-58.1 (7)	C18—N3—C20—C21	-173.1 (5)
C9—N1—C7—C6	122.6 (6)	N3-C20-C21-N4	-1.0 (6)
C5-C6-C7-N1	-24.6 (7)	C19—N4—C21—C20	1.3 (6)
C1—C6—C7—N1	158.5 (5)	C22—N4—C21—C20	178.7 (5)
C9—N1—C8—N2	-0.6 (6)	C28—C23—C24—C25	0.2 (8)
C7—N1—C8—N2	-179.9 (5)	C23—C24—C25—C26	-0.7 (8)
C9—N1—C8—Hg1	-175.3 (4)	C24—C25—C26—C27	0.8 (8)
C7—N1—C8—Hg1	5.4 (8)	C25—C26—C27—C28	-0.4 (8)
C10—N2—C8—N1	0.7 (6)	C26—C27—C28—C23	-0.1 (8)
C11—N2—C8—N1	-179.3 (5)	C26—C27—C28—C29	175.4 (5)
C10—N2—C8—Hg1	175.2 (4)	C24—C23—C28—C27	0.2 (8)
C11—N2—C8—Hg1	-4.7 (8)	C24—C23—C28—C29	-175.7 (5)
C8—N1—C9—C10	0.3 (6)	C30—N5—C29—C28	57.7 (7)
C7—N1—C9—C10	179.7 (5)	C31—N5—C29—C28	-130.7 (5)
N1-C9-C10-N2	0.1 (6)	C27-C28-C29-N5	26.5 (7)
C8—N2—C10—C9	-0.5 (6)	C23-C28-C29-N5	-157.8 (5)
C11—N2—C10—C9	179.5 (5)	C32—N6—C30—N5	-1.3 (6)
C17—C12—C13—C14	-0.2 (8)	C33—N6—C30—N5	179.1 (5)
C12—C13—C14—C15	-1.4 (8)	C32—N6—C30—Hg2	-175.8 (4)
C13—C14—C15—C16	2.1 (8)	C33—N6—C30—Hg2	4.5 (8)
C14—C15—C16—C17	-1.1 (8)	C31—N5—C30—N6	1.4 (6)
C15—C16—C17—C12	-0.4 (8)	C29—N5—C30—N6	173.9 (5)
C15—C16—C17—C18	175.7 (5)	C31—N5—C30—Hg2	175.9 (4)
C13—C12—C17—C16	1.1 (8)	C29—N5—C30—Hg2	-11.6 (8)
C13—C12—C17—C18	-175.4 (5)	C30—N5—C31—C32	-1.0 (6)
C19—N3—C18—C17	60.2 (7)	C29—N5—C31—C32	-173.8 (5)
C20-N3-C18-C17	-127.5 (5)	N5-C31-C32-N6	0.2 (6)
C16-C17-C18-N3	22.5 (7)	C30—N6—C32—C31	0.7 (6)
C12-C17-C18-N3	-161.2 (5)	C33—N6—C32—C31	-179.6 (5)
C20-N3-C19-N4	0.5 (6)		

Symmetry codes: (i) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C10—H10A…F15 ⁱⁱ	0.93	2.32	3.240 (7)	171
C11—H11C···F6 ⁱⁱⁱ	0.96	2.55	3.375 (7)	144
C13—H13A····F7 ⁱⁱ	0.93	2.43	3.355 (7)	175
C18—H18A…F5 ⁱⁱⁱ	0.97	2.50	3.282 (6)	138
C18—H18B…F13 ⁱⁱⁱ	0.97	2.45	3.111 (6)	125

C21—H21A···F12 ^{iv}	0.93	2.51	3.351 (6)	150
C29—H29B…F17 ^v	0.97	2.48	3.125 (7)	123
C31—H31A…F11 ^v	0.93	2.43	3.271 (6)	150

Symmetry codes: (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) *x*, *y*+1, *z*; (iv) -*x*, *y*+1/2, -*z*+1/2; (v) -*x*, -*y*+1, -*z*.

Fig. 2